Influencia de la concentración de infusiones de hojas de Quercus sideroxyla en la extracción de compuestos fenólicos, actividad antioxidante y antiinflamatoria
DOI:
https://doi.org/10.59741/eb5fkj20Palabras clave:
Infusiones de encino, polifenoles, antioxidante, antiinflamatorioResumen
Las infusiones del encino Quercus sideroxyla por su contenido rico en compuestos polifenólicos han mostrado tener efectos bioterapéuticos importantes, especialmente antioxidantes y antiinflamatorios. Dentro de las variables principales para la extracción de compuestos bioactivos por medio del infusionado en agua resalta la relación soluto-solvente. El propósito del presente trabajo fue analizar la influencia del porcentaje de hojas sobre el contenido fenólico extraído y su potencial efecto antioxidante y antiinflamatorios. Para ello se obtuvieron infusiones de Quercus 1 al 10% (p/v) de hojas, las cuales se analizaron el contenido de fenoles y flavonoides totales, se realizó un seguimiento del perfilado fenólico para ácidos fenólicos, flavonoides y taninos hidrolizables por medio de UPLC-ESI--MS/MS. Se determinó la actividad antioxidante por medio de los métodos de FRAP, ABTS, ORAC y DPPH, así como de la actividad antiinflamatoria por medio de un ensayo de estabilización de membranas de eritrocitos. La variación en el porcentaje de hojas para la elaboración de las infusiones promovió un aumento progresivo de la extracción de fenoles hasta un porcentaje del 7% (p/v), posteriormente no se observaron diferencias significativas, pero si una disminución nominal del contenido. El perfilado fenólico se vio también afectado, favoreciendo una mayor concentración de hojas de encino la extracción de taninos hidrolizables, especialmente vascalagina y penducalagina 1 y 2, los cuales contribuyeron en aumentar la actividad antioxidante para el atrapamiento de radicales peróxido y reducción del ion férrico. La actividad antiinflamatoria también se vio aumentada, aunque es posible que ésta se relacione con un efecto sinérgico entre la epicatequina galato con otros polifenoles.
Descargas
Referencias
Al‐Sayed, E., & Abdel‐Daim, M. M. (2018). Analgesic and anti‐inflammatory activities of epicatechin gallate from Bauhinia hookeri. Drug Development Research, 79(4), 157-164. https://doi.org/10.1002/ddr.21430
Álvarez, S. A., Rocha‐Guzmán, N. E., Sánchez-Burgos, J. A., Gallegos‐Infante, J. A., Moreno‐Jiménez, M. R., González‐Laredo, R. F., & Solís-González, S. (2023). Analysis of antioxidant constituents of filtering infusions from oak (Quercus sideroxyla bonpl. and Quercus eduardii trel.) and yerbaniz (Tagetes lucida (Sweet) voss) as monoamine oxidase inhibitors. Molecules, 28(13), 5167. https://doi.org/10.3390/molecules28135167
Astill, C., Birch, M. R., Dacombe, C., Humphrey, P. G., & Martin, P. T. (2001). Factors affecting the caffeine and polyphenol contents of black and green tea infusions. Journal of Agricultural and Food Chemistry, 49(11), 5340–5347. https://doi.org/10.1021/jf010759+
Benzie, I. F., & Choi, S. W. (2014). Antioxidant in food: Content, measurement, significance, action, cautions, caveats, and research needs. En Advances in food and nutrition research.,71, 1-53. https://doi.org/10.1016/b978-0-12-800270-4.00001-8
Bobo, G., Davidov‐Pardo, G., Arroqui, C., Vı́rseda, P., Marín-Arroyo, M. R., & Boronat-Navarro, M. (2014). Intra-laboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts, and comparison with conventional spectrophotometric methods. Journal of the Science of Food and Agriculture, 95(1), 204-209. https://doi.org/10.1002/jsfa.6706
Çavuldak, Ö. A., Vural, N., Akay, M. A., & Anlı, R. E. (2019). Optimization of ultrasound‐assisted water extraction conditions for the extraction of phenolic compounds from black mulberry leaves (Morus nigra l.). Journal of Food Process Engineering, 42(5). https://doi.org/10.1111/jfpe.13132
Díaz-Rivas, J.O.; González-Laredo, R.F.; Chávez-Simental, J.A.; Montoya-Ayón, J.B.; Moreno-Jiménez, M.R.; Gallegos-Infante, J.A.; Rocha-Guzmán, N.E. (2018) Comprehensive PDA-ESI-QqQ of Buddleja scordioides plants elicited with salicylic acid. J. Chem. 218, 4536970
Dudonné, S., Vitrac, X., Coutière, P., Woillez, M., & Mérillon, J. (2009). Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. Journal of Agricultural and Food Chemistry, 57(5), 1768-1774. https://doi.org/10.1021/jf803011r
Evtyugin, D. D., Magina, S., & Evtuguin, D. V. (2020). Recent Advances in the Production and Applications of Ellagic Acid and Its Derivatives. A Review. Molecules, 25(12), 2745. https://doi.org/10.3390/molecules25122745
Gamboa‐Gómez, C. I., Simental‐Mendía, L. E., González‐Laredo, R. F., Alcantar-Orozco, E. J., Monserrat-Juarez, V. H., Ramírez-España, J. C., Gallegos‐Infante, J. A., Moreno‐Jiménez, M. R., & Rocha‐Guzmán, N. E. (2017). In vitro and in vivo assessment of anti-hyperglycemic and antioxidant effects of oak leaves (Quercus convallata and Quercus arizonica) infusions and fermented beverages. Food Research International, 102, 690-699. https://doi.org/10.1016/j.foodres.2017.09.040
Kowalska, J., Marzec, A., Domian, E., Galus, S., Ciurzyńska, A., Brzezińska, R., & Kowalska, H. (2021). Influence of Tea Brewing Parameters on the Antioxidant Potential of Infusions and Extracts Depending on the Degree of Processing of the Leaves of Camellia sinensis. Molecules, 26(16), 4773. https://doi.org/10.3390/molecules26164773
Koleckar, V., Kubikova, K., Rehakova, Z., Kuca, K., Jun, D., Jahodar, L., & Opletal, L. (2008). Condensed and Hydrolysable Tannins as Antioxidants Influencing the Health. Mini-Reviews In Medicinal Chemistry, 8(5), 436-447. https://doi.org/10.2174/138955708784223486
Mendez-Encinas, M. A., Valencia, D., Ortega-García, J., Carvajal-Millan, E., Díaz-Ríos, J. C., Mendez-Pfeiffer, P., Soto-Bracamontes, C. M., Garibay-Escobar, A., Alday, E., & Velazquez, C. (2023b). Anti-Inflammatory Potential of Seasonal Sonoran Propolis Extracts and Some of Their Main Constituents. Molecules, 28(11), 4496. https://doi.org/10.3390/molecules28114496
Molino, S., Lerma-Aguilera, A., Jiménez-Hernández, N., Gosalbes, M. J., Rufián-Henares, J. Á., & Francino, M. P. (2021). Enrichment of Food With Tannin Extracts Promotes Healthy Changes in the Human Gut Microbiota. Frontiers In Microbiology, 12. https://doi.org/10.3389/fmicb.2021.625782
Moreno‐Jiménez, M. R., Trujillo-Esquivel, F., Gallegos‐Corona, M. A., Reynoso‐Camacho, R., González‐Laredo, R. F., Gallegos‐Infante, J. A., Rocha‐Guzmán, N. E., & Ramos-Gómez, M. (2015). Antioxidant, anti-inflammatory and anticarcinogenic activities of edible red oak (Quercus spp.) infusions in rat colon carcinogenesis induced by 1,2-dimethylhydrazine. Food and Chemical Toxicology, 80, 144-153. https://doi.org/10.1016/j.fct.2015.03.011
Nájera-Luna, J. A., Vargas-Antonio, Z., Méndez-González, J., & De Jesús Graciano-Luna, J. (2005). Propiedades físicas y mecánicas de la madera en Quercus laeta Liemb. de El Salto, Durango. Redalyc.org. https://www.redalyc.org/articulo.oa?id=46110307
Oliveira, P. A., Medeiros‐Fonseca, B., Nóbrega, C., Alvarado, A., Pires, M. J., Vala, H., Barros, A., & Faustino-Rocha, A. I. (2023b). Quercus spp. extract as a Promising preventive or therapeutic strategy for cancer: A Systematic review. Molecular Medicine Reports, 28(3). https://doi.org/10.3892/mmr.2023.13062
Osman, N. I., Sidik, N. J., Awal, A., Adam, N. A. M., & Rezali, N. I. (2016). In vitro xanthine oxidase and albumin denaturation inhibition assay of barringtonia racemosa L. And total phenolic content analysis for potential anti-infl ammatory use in gouty arthritis. Journal of Intercultural Ethnopharmacology, 5(4), 343–349. https://doi.org/10.5455/jice.20160731025522
Ou, B., Hampsch-Woodill, M., & Prior, R. L. (2001). Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. Journal Of Agricultural And Food Chemistry, 49(10), 4619-4626. https://doi.org/10.1021/jf010586o
Piazza, S., Martinelli, G., Fumagalli, M., Pozzoli, C., Maranta, N., Giavarini, F., Colombo, L., Nicotra, G., Vicentini, S. F., Genova, F., De Fabiani, E., Sangiovanni, E., & Dell’Agli, M. (2023). Ellagitannins from Castanea sativa Mill. leaf extracts impair H. pylori viability and Infection-Induced inflammation in human gastric epithelial cells. Nutrients, 15(6), 1504. https://doi.org/10.3390/nu15061504
Qi, W., Qi, W., Xiong, D., & Long, M. (2022). Quercetin: Its Antioxidant Mechanism, Antibacterial Properties and Potential Application in Prevention and Control of Toxipathy. Molecules, 27(19), 6545. https://doi.org/10.3390/molecules27196545
Re, R., Pellegrini, N., Proteggente, A. R., Pannala, A. S., Yang, M., & Rice‐Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology And Medicine, 26(9-10), 1231-1237. https://doi.org/10.1016/s0891-5849(98)00315-3
Rocha‐Guzmán, N. E., Gallegos‐Infante, J. A., González‐Laredo, R. F., Reynoso‐Camacho, R., Ramos-Gómez, M., García-Gasca, T., Rodríguez-Muñoz, M. E., Guzmán-Maldonado, S. H., Medina‐Torres, L., & Lujan-García, B. A. (2009). Antioxidant activity and genotoxic effect on HELA cells of phenolic compounds from infusions of Quercus resinosa leaves. Food Chemistry, 115(4), 1320-1325. https://doi.org/10.1016/j.foodchem.2009.01.050
Rocha‐Guzmán, N. E., Medina-Medrano, J. R., Gallegos‐Infante, J. A., González‐Laredo, R. F., Ramos-Gómez, M., Reynoso‐Camacho, R., Guzmán‐Maldonado, H., & González‐Herrera, S. M. (2012). Chemical evaluation, antioxidant capacity, and consumer acceptance of several oak infusions. Journal of Food Science, 77(2). https://doi.org/10.1111/j.1750-3841.2011.02524.x
Ross, H. A., McDougall, G. J., & Stewart, D. (2007). Antiproliferative activity is predominantly associated with ellagitannins in raspberry extracts. Phytochemistry, 68(2), 218-228. https://doi.org/10.1016/j.phytochem.2006.10.014
Samuel, B. B., Esho, B. A., Akinwunmi, K. F., & Oluyemi, W. M. (2021). Membrane stabilization and inhibition of protein denaturation as mechanisms of the Anti-Inflammatory activity of some plant species. DOAJ (DOAJ: Directory of Open Access Journals). https://doi.org/10.30476/tips.2021.93160.1118
Sembiring, E. N., Elya, B., & Sauriasari, R. (2017). Phytochemical screening, total flavonoid and total phenolic content and antioxidant activity of different parts of Caesalpinia Bonduc (L.) Roxb. Pharmacognosy Journal, 10(1), 123-127. https://doi.org/10.5530/pj.2018.1.22
Statista. (2024). México: valor de la producción forestal de encino 2005-2018. https://es.statista.com/estadisticas/593140/valor-de-la-produccion-de-encino-mexico/
Thakur, M. D., Sheth, N. R., & Raval, M. K. (2020). Assessment of In vitro Anti-inflammatory Activity of Ginger and Diclofenac sodium combination. International Journal Of Pharmaceutical Sciences And Drug Research, 442-447. https://doi.org/10.25004/ijpsdr.2020.120503
Vuong, Q. V., Golding, J. M., Stathopoulos, C. E., Nguyen, M. H., & Roach, P. D. (2011). Optimizing conditions for the extraction of catechins from green tea using hot water. Journal of Separation Science, 34(21), 3099-3106. https://doi.org/10.1002/jssc.201000863
Wang, H., & Cao, Z. (2014). Anti-inflammatory Effects of (-)-Epicatechin in Lipopolysaccharide-Stimulated Raw 264.7 Macrophages. Tropical Journal Of Pharmaceutical Research, 13(9), 1415. https://doi.org/10.4314/tjpr.v13i9.6
Wang, S., Li, Y., Meng, X., Chen, S., Huang, D., Xia, Y., & Zhu, S. (2021). Antioxidant activities of chlorogenic acid derivatives with different acyl donor chain lengths and their stabilities during in vitro simulated gastrointestinal digestion. Food Chemistry, 357, 129904. https://doi.org/10.1016/j.foodchem.2021.129904
World Health Organization. (2009). Benefits and risks of the use of chlorine-containing disinfectants in food production and food processing : report of a joint FAO/WHO expert meeting, Ann Arbor, MI, USA, 27-30 May 2008. https://iris.who.int/handle/10665/44250
Yesmin, S., Paul, A., Naz, T., Rahman, A. B. M. A., Akhter, S. F., Wahed, M. I. I., Emran, T. B., & Siddiqui, S. A. (2020). Membrane stabilization as a mechanism of the anti-inflammatory activity of ethanolic root extract of Choi (Piper chaba). Clinical Phytoscience, 6(1). https://doi.org/10.1186/s40816-020-00207-7
Yoshida, T., Amakura, Y., & Yoshimura, M. (2010). Structural Features and Biological Properties of Ellagitannins in Some Plant Families of the Order Myrtales. International Journal Of Molecular Sciences, 11(1), 79-106. https://doi.org/10.3390/ijms11010079
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Carlos Alonso Salas Ramírez, Martha Rocío Moreno-Jiménez, Nuria Elizabeth Rocha-Guzmán, Rubén Francisco González-Laredo, José Alberto Gallegos-Infante, Manuel Efraín González-Mercado, Karen Marlenne Herrera-Rocha

Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.
Cómo citar
PLUM Metrics