Adición de extracto de cáscara de granada en un alimento tradicional mexicano y evaluación de la estabilidad al procesado
DOI:
https://doi.org/10.59741/agri.v1i1.3Palabras clave:
ABTS, DPPH, Punica granatum L., tamalesResumen
La cáscara de granada es un residuo agroindustrial considerada fuente importante de compuestos bioactivos que al adicionarse en la formulación de alimentos, puede otorgarle un carácter funcional. Ante esta perspectiva, en el presente trabajo se evaluó la extracción de estos compuestos a partir de cáscara de granada, así como su estabilidad bajo tratamiento térmico y ultracongelación después de incorporarlos en un alimento tradicional mexicano. El extracto de cáscara de granada se adicionó a cinco diferentes concentraciones en la formulación de tamales: 0, 0.05, 0.1, 0.2 y 0.4 g/kg de masa, y se determinó el efecto del procesamiento (cocción y ultracongelación) sobre el contenido de compuestos bioactivos y la capacidad antioxidante del producto. El extracto obtenido mostró un contenido de fenoles totales de 77.04 mgEAG/gms, con una capacidad antioxidante frente al radical DPPH y ABTS de 301.01 y 305.71 mgET/gms, respectivamente. La dosis de 0.4 g/kg incrementó la capacidad antioxidante hasta 68 veces respecto al control sin extracto, logrando inhibir del 95 al 99% la lipoperoxidación. El producto desarrollado fue capaz de mantener su capacidad antioxidante hasta 60 días, a -40 °C, otorgando un potencial funcional a este alimento.
Descargas
Referencias
Acero N., Gradillas A., Beltran M., García A. and D. Muñoz Mingarro. 2019. Comparison of phenolic compounds profile and antioxidant properties of different sweet cherry (Prunus avium L.) varieties. Food Chemistry. 279: 260-271. https://doi.org/10.1016/j.foodchem.2018.12.008
Ascacio-Valdés J.A., Buenrostro-Figueroa J.J., Aguilera-Carbó A., Prado-Barragán A., Rodríguez-Herrera R. and C.N. Aguilar. 2011. Ellagitannins: Biosynthe-sis, biodegradation and biological properties. Journal of Medicinal Plants Research. 5(19): 4696-4703. https://doi.org/10.5897/JMPR.9000560
Ascacio-Valdés J.A., Buenrostro J.J., De la Cruz R., Sepúlveda L., Aguilera A.F., Prado A., Contreras J.C., Rodríguez R. and C.N. Aguilar. 2013. Fungal biodegradation of pomegranate ellagitannins. Journal of Basic Microbiology., 54(1): 28-34. https://doi.org/10.1002/jobm.201200278
Bonat C.G., Ghanem. A. and M. B. Su-Ling. 2016. Influence of freezing process and frozen storage on the quality of fruits and fruit products. Food Reviews International. 32(3): 280-304. https://doi.org/10.1080/87559129.2015.1075212.
Calani L., Beghè D., Mena P., Del Rio D., Bruni R., Fabbri A., Dall’Asta C. and G. Galaverna. 2013. Ultra-HPLC–MSn (Poly)phenolic Profiling and Chemometric Analysis of Juices from Ancient Punica granatum L. Cultivars: A Nontargeted Approach. Journal of Agricultural Food Chemistry. 61: 5600-5609. https://doi.org/10.1021/jf400387c
Chaovanalikit, A. and R.E. Wrolstad. 2004. Anthocyanin and polyphenolic composition of fresh and processed cherries. Journal of Food Science. 69: FCT73- FCT83. https://doi.org/10.1111/j.1365-2621.2004.tb17859.x
Cruz-Vázquez C., Villanueva-Carvajal A., Estrada-Campuzano G. and A. Dominguez-Lopez. 2019. Tamales texture properties as a function of corn endosperm type. International Journal of Gastronomy and Food Science. 16: 100153. https://doi.org/10.1016/j.ijgfs.2019.100153
Cruz-Vázquez C., Villanueva-Carvajal A., Estrada-Campuzano G. and A. Dominguez-Lopez. 2021. Effect of baking powder as a substitute of pork lard on the texture of Mexican tamales. International Journal of Gastronomy and Food Science. 25: 100387. https://doi.org/10.1016/j.ijgfs.2021.100387
Elfalleh W., Hannachi H., Tlili N., Yahia Y., Nasri N. and A. Ferchichi. 2012. Total phenolic contents and antioxidant activities of pomegranate peel, seed, leaf and flower. Journal of Medicinal Plants Research. 6 (32): 4724-4730. https://doi.org/10.5897/JMPR11.995
Kahkonen M.P., Hopia A.L., Vuorela H.J., Raucha J.P., Pihlaja K., Kujala T.S. and M. Heinonen. 1999. Antioxidant activity of plant extracts containing phenolic compounds. Journal of Agricultural and Food Chemistry. 47(10):3954-3962. https://doi.org/10.1021/jf990146l
Kanatt S.R., Chander R. and A. Sharma. 2010. Antioxidant and antimicrobial activity of pomegranate peel extract improves the shelf life of chicken products. International journal of food science & technology. 45(2): 216-222. https://doi.org/10.1111/j.1365-2621.2009.02124.x
Kumar N., Daniloski D., D’Cunha N.M. Pratibha., Neeraj., Naumovski N. and A.T. Petkoska. 2022. Pomegranate peel extract-a natural bioactive addition to novel active edible packaging. Food Research International. 111378. https://doi.org/10.1016/j.foodres.2022.111378
Machado-Velasco K.M. and J.F. Vélez-Ruiz. 2008. Estudio de propiedades físicas de alimentos mexicanos durante la congelación y el almacenamiento congelado. Revista Mexicana de Ingeniería Química. 7(1):41-54. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-27382008000100006&lng=es&tlng=es
Martínez-Ávila G.C., Aguilera-Carbó A.F., Rodríguez-Herrera R. and C.N. Aguilar. 2012. Fungal enhancement of the antioxidant properties of grape waste. Annals of Microbiology. 62(3): 923-930. https://doi.org/10.1007/s13213-011-0329-z
Meléndez N.P., Nevárez-Moorillón V., Rodriguez-Herrera R., Espinoza J.C. and C.N. Aguilar. 2014. A microassay for quantification of 2,2-diphenyl-1-picrylhydracyl (DPPH) free radical scavenging. African Journal of Biochemistry Research. 8(1): 14-18. https://doi.org/10.5897/AJBR2013.0669
Naveena B.M., Sen A.R., Vaithiyanathan S., Babji Y. and N. Kondaiah. 2008. Comparative efficacy of pomegranate juice, pomegranate rind powder extract and BHT as antioxidants in cooked chicken patties. Meat science. 80(4): 1304-1308. https://doi.org/10.1016/j.meatsci.2008.06.005
Nuamsetti T., Dechayuenyong P. and S. Tantipaibulvut. 2012. Antibacterial activity of pomegranate fruit peels and arils. Science Asia. 38(3): 319-322. https://doi.org/10.2306/scienceasia1513-1874.2012.38.319
Ojha K.S., Kerry J.P., Tiwari B. K. and C. O’Donnell. 2016. Freezing for Food Preservation. Reference Module in Food Science. 1-9. https://doi.org/10.1016/B978-0-08-100596-5.03108-5
Orgil O., Schwartz E., Baruch L., Matityahu I., Mahajna J. and R. Amir. 2014. The antioxidative and anti-proliferative potential of non-edible organs of the pomegranate fruit and tree. LWT-Food Science and Technology. 58(2): 571-577. https://doi.org/10.1016/j.lwt.2014.03.030
Re R., Pellegrini N., Proteggente A., Pannala A., Yang M. and C. Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine. 26(9): 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
Rickman J.C., Barrett D.M. and C.M. Bruhn. 2007. Nutritional comparison of fresh, frozen and canned fruits and vegetables. Part 1. Vitamins C and B and phenolic compounds. Journal of the Science of Food and Agriculture. 87: 930-944. https://doi.org/10.1002/jsfa.2825
Rivas M.Á., Casquete R., de Guía Córdoba M., Benito M.J., Hernández A., RuizMoyano S. and A. Martín. 2021. Functional properties of extracts and residual dietary fibre from pomegranate (Punica granatum L.) peel obtained with different supercritical fluid conditions. LWT. 145: 111305. https://doi.org/10.1016/j.lwt.2021.111305
Rojo-Gutiérrez, E., Carrasco-Molinar, O., Tirado-Gallegos, J.M., Levario-Gómez, A., Chávez-González, M.L., Baeza-Jiménez, R., Buenrostro-Figueroa,
J.J. 2021. Evaluation of green extraction processes, lipid composition and antioxidant activity of pomegranate seed oil. Journal of Food Measurement and Characterization. 15(2): 2098-2107
Salinas-Flores A.P., Guevara-Aguilar A., Natividad-Torres E.A., Baeza-Jiménez R. and J.J. Buenrostro-Figueroa. 2019. Effect of the extraction conditions on the antioxidant capacity of phenolic compounds from pomegranate shell. Mexican Journal of Biotechnology. 4(2): 33-46. https://doi.org/10.29267/mxjb.2019.4.2.33
sas Institute. 2002. sas/stat User’s Guide, Software version 9.0. Car y, N.C., USA.
Shang Z., Li M., Zhang, W., Cai S., Hu X. and J. Yi. 2022. Analysis of phenolic compounds in pickled chayote and their effects on antioxidant activities and cell protection. Food Research International. 157: 111325. https://doi.org/10.1016/j.foodres.2022.111325.
Sihag S., Pal A. and V. Saharan. 2022. Antioxidant properties and free radicals scavenging activities of pomegranate (Punica granatum L.) peels: An in-vitro study. Biocatalysis and Agricultural Biotechnology. 42: 102368. https://doi.org/10.1016/j.bcab.2022.102368
Singh B., Singh J.P., Kau, A. and N. Singh. 2018. Phenolic compounds as beneficial phytochemicals in pomegranate (Punica granatum L.) peel: A review. Food chemistry. 261: 75-86. https://doi.org/10.1016/j.foodchem.2018.04.039
Weber C.W., Kohlhepp E.A., Idouraine A. and L.J. Ochoa. 1993. Nutritional composition of tamales and corn and wheat tortillas. Journal of Food Composition and Analysis. 6(4): 324-335. https://doi.org/10.1006/jfca.1993.1036
Wong-Paz J.E., Contreras-Esquivel J.C., Rodríguez-Herrera R., Carrillo-Inungaray M.L., López L.I., Nevárez-Moorillón G.V. and C.N. Aguilar. 2015. Total phenolic content, in vitro antioxidant activity and chemical composition of plant extracts from semiarid Mexican region. Asian Pacific Journal of Tropical Medicine. 8(2): 104-111. https://doi.org/10.1016/S1995-7645(14)60299-6
Zhou H., Yang W.T., Zhou X., Liu L., Gu J.F., Wang W.L., Zou J.L., Tian T., Peng P.Q. and B.H. Liao. 2016. Accumulation of heavy metals in vegetable
species planted in contaminated soils and the health risk assessment. International journal of environmental research and public health. 13(3): 289. https://doi.org/10.3390/ijerph13030289
Živković J., Šavikin K., Janković T., Ćujić N. and N. Menković. 2018. Optimization of ultrasound-assisted extraction of polyphenolic compounds from pomegranate peel using response surface methodology. Separation and Purification Technology. 194: 40-47. https://doi.org/10.1016/j.seppur.2017.11.032
Descargas
Publicado
Número
Sección
Cómo citar
PLUM Metrics