Agrobacterium: cuatro décadas colaborando con la biotecnología

Autores/as

  • Javier Montalvo Arredondo Departamento de Ciencias Básicas. Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro 1923, CP 25315. Buenavista, Saltillo Coahuila.
  • Erika Nohemi Rivas Martínez Departamento de Botánica. Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro 1923, CP 25315. Buenavista, Saltillo Coahuila.
  • Aida Isabel Leal Robles Departamento de Botánica. Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro 1923, CP 25315. Buenavista, Saltillo Coahuila.
  • Marco Adán Juárez Verdayes Departamento de Ciencias Básicas. Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro 1923, CP 25315. Buenavista, Saltillo Coahuila.

DOI:

https://doi.org/10.59741/agri.v3i2.33

Palabras clave:

Biotecnología, Transformación, Agrobacterium, Agrobacterias, Raíces pilosas

Resumen

En la naturaleza, el proceso de transformación genética ocurre de manera natural entre diversos organismos. Desde la descripción de las Agrobacterias como el agente causal de tumores en diferentes tipos de plantas y su capacidad de transferir material genético, se ha llevado a cabo un extenso estudio para adaptar esta capacidad como una herramienta biotecnológica para la introducción de nuevas secuencias a las células susceptibles de las plantas. Actualmente, se dispone con una serie de cepas para la entrega del material genético, y su utilización para transformar plantas ha permitido el estudio de diversos procesos celulares, como la simbiosis, el desarrollo de la raíz y la respuesta a diferentes tipos de estrés. Además, el uso de esta metodología ha facilitado el desarrollo de diversas variedades de plantas con características deseables, como plantas resistentes a la sequía y la resistencia a plagas ejemplificada en el maíz y el algodón (Bt). En la actualidad existen varias metodologías para transferir la información genética a plantas, pero la utilización de A. tumefaciens o A. rhizogenes son la primera elección. En esta revisión bibliográfica se estudiarán las principales aportaciones al descubrimiento de las Agrobacterias causantes de tumores y su posterior utilización como una herramienta en la biotecnología.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Aliu, E., Ji, Q., Wlazlo, A., Grosic, S., Azanu, M. K., Wang, K. & Lee, K. 2024. Enhancing Agrobacterium-mediated plant transformation efficiency through improved ternary vector systems and auxotrophic strains. Frontiers in Plant Science, 15.

Azizi-Dargahlou, S. & Pouresmaeil, M. 2024. Agrobacterium tumefaciens-Mediated Plant Transformation: A Review. Molecular Biotechnology, 66, 1563-1580.

Bagal, D., Chowdhary, A. A., Mehrotra, S., Mishra, S., Rathore, S. & Srivastava, V. 2023. Metabolic engineering in hairy roots: An outlook on production of plant secondary metabolites. Plant Physiology and Biochemistry, 201, 107847.

Bahramnejad, B., Naji, M., Bose, R. & Jha, S. 2019. A critical review on use of Agrobacterium rhizogenes and their associated binary vectors for plant transformation. Biotechnology Advances, 37, 107405.

Baker, C. J., Smith, J. & Rice, C. 2020. Apoplast redox metabolism: Effect of acetovanillone (apocynin) and acetosyringone, on their co-oxidation and redox properties. Physiological and Molecular Plant Pathology, 110, 101481.

Banta, L. M., Joerger, R. D., Howitz, V. R., Campbell, A. M. & Binns, A. N. 1994. Glu-255 outside the predicted ChvE binding site in VirA is crucial for sugar enhancement of acetosyringone perception by Agrobacterium tumefaciens. Journal of Bacteriology, 176, 3242-3249.

Bapat, V. A., Kavi Kishor, P. B., Jalaja, N., Jain, S. M. & Penna, S. 2023. Plant Cell Cultures: Biofactories for the Production of Bioactive Compounds. Agronomy, 13, 858.

Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A. & Horvath, P. 2007. CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes. Science, 315, 1709-1712.

Bélanger, J. G., Copley, T. R., Hoyos-Villegas, V., Charron, J.-B. & O’donoughue, L. 2024. A comprehensive review of in planta stable transformation strategies. Plant Methods, 20, 79.

Bermúdez Guzmán, M. D. J., Valadez Ramírez, P., Buenrostro Nava, M. T., Manzo Sánchez, G. & Guzmán González, S. 2013. Inducción in vitro de raíces de Carica papaya mediante Agrobacterium rhizogenes y ácido 3-indolbutírico. Revista mexicana de ciencias agrícolas, 4, 1055-1065.

Bevan, M. W. & Chilton, M.-D. 1982. T-DNA OF THE AGROBACTERIUM TI AND RI PLASMIDS. Annual Review of Genetics, 16, 357-384.

Brown, P. J. B., Chang, J. H. & Fuqua, C. 2023. Agrobacterium tumefaciens: a Transformative Agent for Fundamental Insights into Host-Microbe Interactions, Genome Biology, Chemical Signaling, and Cell Biology. Journal of Bacteriology, 205, e00005-23.

Carareto Alves, L. M., De Souza, J. A. M., Varani, A. D. M. & Lemos, E. G. D. M. 2014. The Family Rhizobiaceae. In: ROSENBERG, E., DELONG, E. F., LORY, S., STACKEBRANDT, E. & THOMPSON, F. (eds.) The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Berlin, Heidelberg: Springer Berlin Heidelberg.

Citovsky, V., Zupan, J., Warnick, D. & Zambryski, P. 1992. Nuclear Localization of Agrobacterium VirE2 Protein in Plant Cells. Science, 256, 1802-1805.

Conn, H. J. 1942. Validity Of The Genus Alcaligenes. Journal Of Bacteriology, 44, 353-360.

Conner, A. J. & Dommisse, E. M. 1992. Monocotyledonous Plants as Hosts for Agrobacterium. International Journal of Plant Sciences, 153, 550-555.

De Lajudie, P. M., Andrews, M., Ardley, J., Eardly, B., Jumas-Bilak, E., Kuzmanović, N., Lassalle, F., Lindström, K., Mhamdi, R., Martínez-Romero, E., Moulin, L., Mousavi, S. A., Nesme, X., Peix, A., Puławska, J., Steenkamp, E., Stępkowski, T., Tian, C.-F., Vinuesa, P., Wei, G., Willems, A., Zilli, J. & Young, P. 2019. Minimal standards for the description of new genera and species of rhizobia and agrobacteria. International Journal of Systematic and Evolutionary Microbiology, 69, 1852-1863.

Deeba, F., Hyder, M. Z., Shah, S. H. & Naqvi, S. M. S. 2014. Multiplex PCR assay for identification of commonly used disarmed Agrobacterium tumefaciens strains. SpringerPlus, 3, 358.

Dessaux, Y., Petit, A., Farrand, S. K. & Murphy, P. J. 1998. Opines and Opine-Like Molecules Involved in Plant-Rhizobiaceae Interactions. In: SPAINK, H. P., KONDOROSI, A. & HOOYKAAS, P. J. J. (eds.) The Rhizobiaceae: Molecular Biology of Model Plant-Associated Bacteria. Dordrecht: Springer Netherlands.

Escobar, M. A. & Dandekar, A. M. 2003. Agrobacterium tumefaciens as an agent of disease. Trends in Plant Science, 8, 380-386.

Estrada-Navarrete, G., Alvarado-Affantranger, X., Olivares, J.-E., Díaz-Camino, C., Santana, O., Murillo, E., Guillén, G., Sánchez-Guevara, N., Acosta, J., Quinto, C., Li, D., Gresshoff, P. M. & Sánchez, F. 2006. Agrobacterium rhizogenes Transformation of the Phaseolus spp.: A Tool for Functional Genomics. Molecular Plant-Microbe Interactions®, 19, 1385-1393.

Fehler, A. O., Kallehauge, T. B., Geissler, A. S., González-Tortuero, E., Seemann, S. E., Gorodkin, J. & Vinther, J. 2022. Flagella disruption in Bacillus subtilis increases amylase production yield. Microbial Cell Factories, 21, 131.

Friesner, J. & Britt, A. B. 2003. Ku80- and DNA ligase IV-deficient plants are sensitive to ionizing radiation and defective in T-DNA integration. The Plant Journal, 34, 427-440.

Fukuoka, H., Ogawa, T., Mitsuhara, I., Iwai, T., Isuzugawa, K., Nishizawa, Y., Gotoh, Y., Nishizawa, Y., Tagiri, A., Ugaki, M., Ohshima, M., Yano, H., Murai, N., Niwa, Y., Hibi, T. & Ohashi, Y. 2000. Agrobacterium-mediated transformation of monocot and dicot plants using the NCR promoter derived from soybean chlorotic mottle virus. Plant Cell Reports, 19, 815-820.

Gao, C. 2021. Genome engineering for crop improvement and future agriculture. Cell, 184, 1621-1635.

Gao, R. & Lynn, D. G. 2005. Environmental pH Sensing: Resolving the VirA/VirG Two-Component System Inputs for Agrobacterium Pathogenesis. Journal of Bacteriology, 187, 2182-2189.

García-Cano, E., Hak, H., Magori, S., Lazarowitz, S. G. & Citovsky, V. 2018. The Agrobacterium F-Box Protein Effector VirF Destabilizes the Arabidopsis GLABROUS1 Enhancer/Binding Protein-Like Transcription Factor VFP4, a Transcriptional Activator of Defense Response Genes. Molecular Plant-Microbe Interactions®, 31, 576-586.

García-Cano, E., Magori, S., Sun, Q., Ding, Z., Lazarowitz, S. G. & Citovsky, V. 2015. Interaction of Arabidopsis Trihelix-Domain Transcription Factors VFP3 and VFP5 with Agrobacterium Virulence Protein VirF. PLOS ONE, 10, e0142128.

García-Rodríguez, F. M., Schrammeijer, B. & Hooykaas, P. J. J. 2006. The Agrobacterium VirE3 effector protein: a potential plant transcriptional activator. Nucleic Acids Research, 34, 6496-6504.

Gelvin, S. B. 2003. Improving plant genetic engineering by manipulating the host. Trends in Biotechnology, 21, 95-98.

Gelvin, S. B. 2017. Integration of Agrobacterium T-DNA into the Plant Genome. Annual Review of Genetics, 51, 195-217.

Ghogare, R., Ludwig, Y., Bueno, G. M., Slamet-Loedin, I. H. & Dhingra, A. 2021. Genome editing reagent delivery in plants. Transgenic Research, 30, 321-335.

Han-Jing, Y., Meng-Ling, H., Wei-Jian, H., Dong-Mei, L. & Xiao-Fang, Y. 2016. Induction of hairy roots and plant regeneration from the medicinal plant Pogostemon Cablin. Pharmacognosy Journal, 8.

Hayta, S., Smedley, M. A., Demir, S. U., Blundell, R., Hinchliffe, A., Atkinson, N. & Harwood, W. A. 2019. An efficient and reproducible Agrobacterium-mediated transformation method for hexaploid wheat (Triticum aestivum L.). Plant Methods, 15, 121.

Hensel, G., Marthe, C. & Kumlehn, J. 2017. Agrobacterium-Mediated Transformation of Wheat Using Immature Embryos. In: BHALLA, P. L. & SINGH, M. B. (eds.) Wheat Biotechnology: Methods and Protocols. New York, NY: Springer New York.

Hohn, B., Koukolíková-Nicola, Z., Bakkeren, G. & Grimsley, N. 1989. Agrobacterium-mediated gene transfer to monocots and dicots. Genome, 31, 987-993.

Hooykaas, M. J. G. & Hooykaas, P. J. J. 2021. The genome sequence of hairy root Rhizobium rhizogenes strain LBA9402: Bioinformatics analysis suggests the presence of a new opine system in the agropine Ri plasmid. MicrobiologyOpen, 10, e1180.

Hooykaas, P. J. J., Van Heusden, G. P. H., Niu, X., Reza Roushan, M., Soltani, J., Zhang, X. & Van Der Zaal, B. J. 2018. Agrobacterium-Mediated Transformation Of Yeast And Fungi. In: Gelvin, S. B. (ed.) Agrobacterium Biology: From Basic Science to Biotechnology. Cham: Springer International Publishing.

Ikeda, H., Moriya, K. & Matsumoto, T. 1981. In vitro study of illegitimate recombination: involvement of DNA gyrase. Cold Spring Harb Symp Quant Biol, 45 Pt 1, 399-408.

Isogai, A., Fukuchi, N., Hayashi, M., Kamada, H., Harada, H. & Suzuki, A. 1990. Mikimopine, an opine in hairy roots of tobacco induced byAgrobacterium rhizogenes. Phytochemistry, 29, 3131-3134.

Jeong, J.-H., Jeon, E.-Y., Hwang, M. K., Song, Y. J. & Kim, J.-Y. 2024. Development of super-infective ternary vector systems for enhancing the Agrobacterium-mediated plant transformation and genome editing efficiency. Horticulture Research, 11.

Jin, K., Tian, N., Da Silva Ferreira, J. F., Sandhu, D., Xiao, L., Gu, M., Luo, Y., Zhang, X., Liu, G., Liu, Z., Huang, J. & Liu, S. 2022. Comparative Transcriptome Analysis of Agrobacterium tumefaciens Reveals the Molecular Basis for the Recalcitrant Genetic Transformation of Camellia sinensis L. Biomolecules, 12, 688.

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A. & Charpentier, E. 2012. A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science, 337, 816-821.

Kamoen, L., Kralemann, L. E. M., Van Schendel, R., Van Tol, N., Hooykaas, P. J. J., De Pater, S. & Tijsterman, M. 2024. Genetic dissection of mutagenic repair and T-DNA capture at CRISPR-induced DNA breaks in Arabidopsis thaliana. PNAS Nexus, 3.

Kiryushkin, A. S., Ilina, E. L., Guseva, E. D., Pawlowski, K. & Demchenko, K. N. 2022. Hairy CRISPR: Genome Editing in Plants Using Hairy Root Transformation. Plants, 11, 51.

Koul, B. 2022. Cisgenics and Transgenics: Strategies for Sustainable Crop Development and Food Security, Springer Nature.

Krenek, P., Samajova, O., Luptovciak, I., Doskocilova, A., Komis, G. & Samaj, J. 2015. Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications. Biotechnology Advances, 33, 1024-1042.

Kumar, R., Mamrutha, H. M., Kaur, A., Venkatesh, K., Sharma, D. & Singh, G. P. 2019. Optimization of Agrobacterium-mediated transformation in spring bread wheat using mature and immature embryos. Molecular Biology Reports, 46, 1845-1853.

Kuzmanović, N., WOLF, J., WILL, S. E., SMALLA, K., DICENZO, G. C. & NEUMANN-SCHAAL, M. 2023. Diversity and Evolutionary History of Ti Plasmids of “tumorigenes” Clade of Rhizobium spp. and Their Differentiation from Other Ti and Ri Plasmids. Genome Biology and Evolution, 15.

Lacroix, B. & Citovsky, V. 2019. Pathways of DNA Transfer to Plants from Agrobacterium tumefaciens and Related Bacterial Species. Annual Review of Phytopathology, 57, 231-251.

Lacroix, B. & Citovsky, V. 2022. Chapter One - Genetic factors governing bacterial virulence and host plant susceptibility during Agrobacterium infection. Advances in Genetics. Academic Press.

Lahue, C., Madden, A., Dunn, R. R. & Smukowski Heil, C. 2020. History and Domestication of Saccharomyces cerevisiae in Bread Baking. Frontiers in Genetics, 11.

Le Flem-Bonhomme, V., Laurain-Mattar, D. & Fliniaux, M. A. 2004. Hairy root induction of Papaver somniferum var. album, a difficult-to-transform plant, by A. rhizogenes LBA 9402. Planta, 218, 890-893.

Lee, L.-Y. & Gelvin, S. B. 2008. T-DNA Binary Vectors and Systems. Plant Physiology, 146, 325-332.

Lee, Y.-W., Jin, S., Sim, W.-S. & Nester, E. W. 1996. The sensing of plant signal molecules by Agrobacterium: genetic evidence for direct recognition of phenolic inducers by the VirA protein. Gene, 179, 83-88.

Li, X., Yang, Q., Peng, L., Tu, H., Lee, L.-Y., Gelvin, S. B. & Pan, S. Q. 2020. Agrobacterium-delivered VirE2 interacts with host nucleoporin CG1 to facilitate the nuclear import of VirE2-coated T complex. Proceedings of the National Academy of Sciences, 117, 26389-26397.

Li, Y. G. & Christie, P. J. 2018. The Agrobacterium VirB/VirD4 T4SS: Mechanism and Architecture Defined Through In Vivo Mutagenesis and Chimeric Systems. In: GELVIN, S. B. (ed.) Agrobacterium Biology: From Basic Science to Biotechnology. Cham: Springer International Publishing.

Liu, H., Zhao, J., Chen, F., Wu, Z., Tan, J., Nguyen, N. H., Cheng, Z. & Weng, Y. 2023a. Improving Agrobacterium tumefaciens−Mediated Genetic Transformation for Gene Function Studies and Mutagenesis in Cucumber (Cucumis sativus L.). Genes, 14, 601.

Liu, N., Lee, L.-Y., Yu, Y. & Gelvin, S. 2023b. Myosin VIII and XI isoforms interact with Agrobacterium VirE2 protein and help direct transport from the plasma membrane to the perinuclear region during plant transformation. bioRxiv.

Liu, P. & Nester, E. W. 2006. Indoleacetic acid, a product of transferred DNA, inhibits vir gene expression and growth of Agrobacterium tumefaciens C58. Proceedings of the National Academy of Sciences, 103, 4658-4662.

Lonoce, C., Salem, R., Marusic, C., Jutras, P. V., Scaloni, A., Salzano, A. M., Lucretti, S., Steinkellner, H., Benvenuto, E. & Donini, M. 2016. Production of a tumour-targeting antibody with a human-compatible glycosylation profile in N. benthamiana hairy root cultures. Biotechnology Journal, 11, 1209-1220.

Magembe, E. M., Li, H., Taheri, A., Zhou, S. & Ghislain, M. 2023. Identification of T-DNA structure and insertion site in transgenic crops using targeted capture sequencing. Frontiers in Plant Science, 14.

Malpighi, M., Redfern, M., Cameron, A. J. & Down, K. D. K. 2008. De Gallis-on Galls: By Marcello Malpighi: Facsimile Together with a Translation and Interpretation, Ray Society.

Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, V., Ronald, P., Dow, M., Verdier, V., Beer, S. V., Machado, M. A., Toth, I., Salmond, G. & Foster, G. D. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology, 13, 614-629.

Matveeva, T. V. & Sokornova, S. V. 2016. Agrobacterium rhizogenes-Mediated Transformation of Plants for Improvement of Yields of Secondary Metabolites. In: PAVLOV, A. & BLEY, T. (eds.) Bioprocessing of Plant In Vitro Systems. Cham: Springer International Publishing.

Mauro, M. L., Costantino, P. & Bettini, P. P. 2017. The never ending story of rol genes: a century after. Plant Cell, Tissue and Organ Culture (PCTOC), 131, 201-212.

Mayerhofer, R., Koncz‐Kalman, Z., Nawrath, C., Bakkeren, G., Crameri, A., Angelis, K., Redei, G. P., Schell, J., Hohn, B. & Koncz, C. 1991. T‐DNA integration: a mode of illegitimate recombination in plants. The EMBO Journal, 10, 697-704-704.

Nilsson, O. & Olsson, O. 1997. Getting to the root: The role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiologia Plantarum, 100, 463-473.

Nonaka, S., Yuhashi, K.-I., Takada, K., Sugaware, M., Minamisawa, K. & Ezura, H. 2008. Ethylene production in plants during transformation suppresses vir gene expression in Agrobacterium tumefaciens. New Phytologist, 178, 647-656.

Ooms, G., Burrell, M. M., Karp, A., Bevan, M. & Hille, J. 1987. Genetic transformation in two potato cultivars with T-DNA from disarmed Agrobacterium. Theoretical and Applied Genetics, 73, 744-750.

Otten, L. 2021. T-DNA regions from 350 Agrobacterium genomes: maps and phylogeny. Plant Molecular Biology, 106, 239-258.

Otten, L., Burr, T. & Szegedi, E. 2008. Agrobacterium: A disease-causing bacterium. In: TZFIRA, T. & CITOVSKY, V. (eds.) Agrobacterium: From Biology to Biotechnology. New York, NY: Springer New York.

Palumbo, J. D., Phillips, D. A. & Kado, C. I. 1998. Characterization of a new Agrobacterium tumefaciens strain from alfalfa (Medicago sativa L.). Archives of Microbiology, 169, 381-386.

Pavlov, A. & Bley, T. 2006. Betalains biosynthesis by Beta vulgaris L. hairy root culture in a temporary immersion cultivation system. Process Biochemistry, 41, 848-852.

Pérez, J. B., Remy, S., Swennen, R. & Sági, L. 2007. Banana (Musa sp.). In: WANG, K. (ed.) Agrobacterium Protocols Volume 2. Totowa, NJ: Humana Press.

Pitzschke, A. 2013. Agrobacterium infection and plant defense—transformation success hangs by a thread. Frontiers in Plant Science, 4.

Přibylová, A. & FISCHER, L. 2024. How to use CRISPR/Cas9 in plants: from target site selection to DNA repair. Journal of Experimental Botany, 75, 5325-5343.

Prostak, S. M., Medina, E. M., Kalinka, E. & Fritz-Laylin, L. K. 2023. A guide to Agrobacterium-mediated transformation of the chytrid fungus Spizellomyces punctatus. Access Microbiology.

Qin, Y., Wang, D., Fu, J., Zhang, Z., Qin, Y., Hu, G. & Zhao, J. 2021. Agrobacterium rhizogenes-mediated hairy root transformation as an efficient system for gene function analysis in Litchi chinensis. Plant Methods, 17, 103.

Riker, A., Banfield, W., Wright, W., Keitt, G. & Sagen, H. E. 1930. Studies on infectious hairy root of nursery apple trees.

Roushan, M. R., Shao, S., Poledri, I., Hooykaas, P. J. J. & Van Heusden, G. P. H. 2022. Increased Agrobacterium‐mediated transformation of Saccharomyces cerevisiae after deletion of the yeast ADA2 gene. Letters in Applied Microbiology, 74, 228-237.

Saifi, S. K., Passricha, N., Tuteja, R., Kharb, P. & Tuteja, N. 2020. Chapter 21 - In planta transformation: A smart way of crop improvement. In: TUTEJA, N., TUTEJA, R., PASSRICHA, N. & SAIFI, S. K. (eds.) Advancement in Crop Improvement Techniques. Woodhead Publishing.

Sandhya, D., Jogam, P., Allini, V. R., Abbagani, S. & Alok, A. 2020. The present and potential future methods for delivering CRISPR/Cas9 components in plants. Journal of Genetic Engineering and Biotechnology, 18, 25.

Slater, S. C., Goldman, B. S., Goodner, B., Setubal, J. C., Farrand, S. K., Nester, E. W., Burr, T. J., Banta, L., Dickerman, A. W., Paulsen, I., Otten, L., Suen, G., Welch, R., Almeida, N. F., Arnold, F., Burton, O. T., Du, Z., Ewing, A., Godsy, E., Heisel, S., Houmiel, K. L., Jhaveri, J., Lu, J., Miller, N. M., Norton, S., Chen, Q., Phoolcharoen, W., Ohlin, V., Ondrusek, D., Pride, N., Stricklin, S. L., Sun, J., Wheeler, C., Wilson, L., Zhu, H. & Wood, D. W. 2009. Genome Sequences of Three Agrobacterium Biovars Help Elucidate the Evolution of Multichromosome Genomes in Bacteria. Journal of Bacteriology, 191, 2501-2511.

Smith, E. F. & Townsend, C. O. 1907. A Plant-Tumor Of Bacterial Origin. Science, 25, 671-673.

Song, G.-Q. & Sink, K. C. 2006. Transformation of Montmorency sour cherry (Prunus cerasus L.) and Gisela 6 (P. cerasus × P. canescens) cherry rootstock mediated by Agrobacterium tumefaciens. Plant Cell Reports, 25, 117-123.

Srivastava, S. & Srivastava, A. K. 2012. In Vitro Azadirachtin Production by Hairy Root Cultivation of Azadirachta indica in Nutrient Mist Bioreactor. Applied Biochemistry and Biotechnology, 166, 365-378.

Stapp, C. & Knösel, D. 1954. Zur genetik sternbildender Bakterien. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt, 2, 243-259.

Stieger, P. A., Meyer, A. D., Kathmann, P., Fründt, C., Niederhauser, I., Barone, M. & Kuhlemeier, C. 2004. The orf13 T-DNA Gene of Agrobacterium rhizogenes Confers Meristematic Competence to Differentiated Cells. Plant Physiology, 135, 1798-1808.

Su, W., Xu, M., Radani, Y. & Yang, L. 2023. Technological Development and Application of Plant Genetic Transformation. International Journal of Molecular Sciences, 24, 10646.

Subramoni, S., Nathoo, N., Klimov, E. & Yuan, Z.-C. 2014. Agrobacterium tumefaciens responses to plant-derived signaling molecules. Frontiers in Plant Science, 5.

Tang, Y., Zhang, Z., Yang, Z. & Wu, J. 2023. CRISPR/Cas9 and Agrobacterium tumefaciens virulence proteins synergistically increase efficiency of precise genome editing via homology directed repair in plants. Journal of Experimental Botany, 74, 3518-3530.

Tinland, B., Koukolíková-Nicola, Z., Hall, M. N. & Hohn, B. 1992. The T-DNA-linked VirD2 protein contains two distinct functional nuclear localization signals. Proceedings of the National Academy of Sciences, 89, 7442-7446.

Triplett, B. A., Moss, S. C., Bland, J. M. & Dowd, M. K. 2008. Induction of hairy root cultures from Gossypium hirsutum and Gossypium barbadense to produce gossypol and related compounds. In Vitro Cellular & Developmental Biology - Plant, 44, 508-517.

Vaghchhipawala, Z. E., Vasudevan, B., Lee, S., Morsy, M. R. & Mysore, K. S. 2012. Agrobacterium May Delay Plant Nonhomologous End-Joining DNA Repair via XRCC4 to Favor T-DNA Integration. The Plant Cell, 24, 4110-4123.

Van Attikum, H., Bundock, P. & Hooykaas, P. J. J. 2001. Non‐homologous end‐joining proteins are required for Agrobacterium T‐DNA integration. The EMBO Journal, 20, 6550-6558.

Van Eck, J., Keen, P. & Tjahjadi, M. 2019. Agrobacterium tumefaciens-Mediated Transformation of Tomato. In: KUMAR, S., BARONE, P. & SMITH, M. (eds.) Transgenic Plants: Methods and Protocols. New York, NY: Springer New York.

Van Kregten, M., De Pater, S., Romeijn, R., Van Schendel, R., Hooykaas, P. J. J. & Tijsterman, M. 2016. T-DNA integration in plants results from polymerase-θ-mediated DNA repair. Nature Plants, 2, 16164.

Van Montagu, M. & Zambryski, P. 2017. Agrobacterium and Ti Plasmids☆. Reference Module in Life Sciences. Elsevier.

Veremeichik, G. N., Bulgakov, D. V., Solomatina, T. O. & Makhazen, D. S. 2023. In the interkingdom horizontal gene transfer, the small rolA gene is a big mystery. Applied Microbiology and Biotechnology, 107, 2097-2109.

Wang, K., Herrera-Estrella, A. & Montagu, M. V. 1990. Overexpression of virD1 and virD2 genes in Agrobacterium tumefaciens enhances T-complex formation and plant transformation. Journal of Bacteriology, 172, 4432-4440.

Weisberg, A. J., Davis, E. W., Tabima, J., Belcher, M. S., Miller, M., Kuo, C.-H., Loper, J. E., Grünwald, N. J., Putnam, M. L. & Chang, J. H. 2020. Unexpected conservation and global transmission of agrobacterial virulence plasmids. Science, 368, eaba5256.

Weisberg, A. J., Miller, M., Ream, W., Grünwald, N. J. & Chang, J. H. 2021. Diversification of plasmids in a genus of pathogenic and nitrogen-fixing bacteria. Philosophical Transactions of the Royal Society B: Biological Sciences, 377, 20200466.

Xu, Y., Liu, F., Han, G., Wang, W., Zhu, S. & Li, X. 2018. Improvement of Lotus japonicus hairy root induction and development of a mycorrhizal symbiosis system. Applications in Plant Sciences, 6, e1141.

Young, J. M., Kuykendall, L. D., Martínez-Romero, E., Kerr, A. & Sawada, H. 2001. A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. International Journal of Systematic and Evolutionary Microbiology, 51, 89-103.

Yuan, Z.-C., Edlind, M. P., Liu, P., Saenkham, P., Banta, L. M., Wise, A. A., Ronzone, E., Binns, A. N., Kerr, K. & Nester, E. W. 2007. The plant signal salicylic acid shuts down expression of the vir regulon and activates quormone-quenching genes in Agrobacterium. Proceedings of the National Academy of Sciences, 104, 11790-11795.

Zambryski, P., Joos, H., Genetello, C., Leemans, J., Van Montagu, M. & Schell, J. 1983. Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. The EMBO Journal, 2, 2143-2150.

Zhang, Y., Chen, M., Siemiatkowska, B., Toleco, M. R., Jing, Y., Strotmann, V., Zhang, J., Stahl, Y. & Fernie, A. R. 2020. A Highly Efficient Agrobacterium-Mediated Method for Transient Gene Expression and Functional Studies in Multiple Plant Species. Plant Communications, 1, 100028.

Descargas

Publicado

2024-11-20

Número

Sección

Artículo de revisión

Cómo citar

Agrobacterium: cuatro décadas colaborando con la biotecnología. (2024). Universitas Agri, 3(2), 13-28. https://doi.org/10.59741/agri.v3i2.33

PLUM Metrics