Aplicación de película comestible a base de proteína-pectina para prolongar la vida en anaquel en arándanos

Autores/as

  • Jesús S. Esquivel Facultad de Agronomía, Universidad Autónoma de Nuevo León. General Escobedo, CP 66050, Nuevo León, México
  • Yeime Robles Facultad de Agronomía, Universidad Autónoma de Nuevo León. General Escobedo, CP 66050, Nuevo León, México
  • Francisco Valero Facultad de Agronomía, Universidad Autónoma de Nuevo León. General Escobedo, CP 66050, Nuevo León, México
  • Guillermo C. G. Martínez-Ávila Facultad de Agronomía, Universidad Autónoma de Nuevo León. General Escobedo, CP 66050, Nuevo León, México
  • Romeo Rojas Facultad de Agronomía, Universidad Autónoma de Nuevo León. General Escobedo, CP 66050, Nuevo León, México https://orcid.org/0000-0001-8947-6125

DOI:

https://doi.org/10.59741/agri.v1i1.6

Palabras clave:

pectina, películas comestibles, proteína, vida de anaquel

Resumen

El empacado de alimentos ecoamigable ha retomado gran importancia en los últimos años debido a que se ha generado conciencia respecto
al uso excesivo de materiales plásticos de empaque. Así mismo, la población ha retornado al consumo de alimentos que benefician la salud,
como los arándanos, que tienen gran cantidad de compuestos bioactivos, pero corta vida de anaquel. Las películas comestibles representan
una alternativa viable de conservación, para lo cual se formuló una a base de pectina (0.4% p/v), proteína (0.4% p/v) y glicerol como plastificante para aplicarla en arándanos y así conservarlos a temperatura ambiente por cinco días. La película presentó una permeabilidad al vapor de agua de 75.82 x 10-11 g/m s Pa, lo cual permite reducir la
pérdida de agua en los arándanos un 4.42% respecto al control, y los mantiene con mejor apariencia. Por tal motivo, la aplicación de la película resulta una alternativa viable para la conservación de arándanos a temperatura ambiente en lugares calurosos y húmedos.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Aguirre-Joya J. A., Ventura-Sobrevilla J., Martínez-Vazquez G., Ruelas-Chacón X., Rojas R., Rodríguez-Herrera R. and C.N. Aguilar. 2017. Effects of a natural bioactive coating on the quality and shelf life prolongation at different storage conditions of avocado (Persea americana Mill.) cv. Hass. Food Packaging and Shelf Life. 14(B): 102-107. https://doi.org/10.1016/j.fpsl.2017.09.003

Alvarez-Perez O.B., Ventura-Sobrevilla J.M., Torres-León C., Rojas-Molina R., Rodríguez-Herrera R., Aguilar-González, M.A. and C.N. Aguilar. 2022. Development and characterization of whey protein films incorporated with tarbush polyphenols and candelilla wax. Food Bioscience. 45. 101505. https://doi.org/10.1016/j.fbio.2021.101505

Amanullah S., Jahangir M.M., Ikram R.M., Sajid M., Abbas F. and A.I. Mallano. 2016. Aloe vera Coating Efficiency on Shelf Life of Eggplants at Differential Storage Temperatures. Journal of Northeast Agricultural University (English Edition). 23(4): 15-25. https://doi.org/https://doi.org/10.1016/S1006-8104(17)30003-X

Aqil F., Jeyabalan J., Kausar H., Munagala R., Singh I.P. and R. Gupta. 2016. Lung cancer inhibitory activity of dietary berries and berry polyphenolics. Journal of Berry Research. 6(2): 105-114. https://doi.org/10.3233/JBR-160120

Bell S.R., Hernández Montiel L.G., González Estrada R.R. and P. Gutiérrez Martínez. 2021. Main diseases in postharvest blueberries, conventional and eco-friendly control methods: A review. LWT. 149: 112046. https://doi.org/10.1016/J.LWT.2021.112046

Bosquez-Molina E., Jesús E.R., Bautista-Baños S., Verde-Calvo J.R. and J. Morales-López. 2010. Inhibitory effect of essential oils against Colletotrichum gloeosporioides and Rhizopus stolonifer in stored papaya fruit and their possible application in coatings. Postharvest Biology and Technology. 57(2): 132-137. http://dx.doi.org/10.1016/j.postharvbio.2010.03.00

Brion-Espinoza I.A., Iñiguez-Moreno M., Ragazzo-Sánchez J.A., Barros-Castillo J.C., Calderón-Chiu C. and M. Calderón-Santoyo. 2021. Edible pectin film added with peptides from jackfruit leaves obtained by high-hydrostatic pressure and pepsin hydrolysis. Food Chemistry: X. 12: 100170. https://doi.org/10.1016/J.FOCHX.2021.100170

Carvalho R.L., Cabral M.F., Germano T.A., de Carvalho W.M., Brasil I.M., Gallão M.I., Moura C.F.H., Lopes M.M.A. and M.R.A. de Miranda. 2016. Chitosan coating with trans-cinnamaldehyde improves structural integrity and antioxidant metabolism of fresh-cut melon. Postharvest Biology and Technology. 113: 29-39. https://doi.org/10.1016/J.POSTHARVBIO.2015.11.004

Chen H., Wu C., Feng X., He M., Zhu X., Li Y. and F. Teng F. 2022. Effects of two fatty acids on soy protein isolate/sodium alginate edible films: Structures and properties. LWT. 159:113221. https://doi.org/10.1016/J.LWT.2022.113221

Cruz V., Rojas R., Saucedo-Pompa S., Martinez D.G., Aguilera-Carbo A.F., Alvarez O.B., Rodriguez R., Ruiz J. and C.N. Aguilar. 2015. Improvement of Shelf Life and Sensory Quality of Pears Using a Specialized Edible Coating. Journal of Chemistry. 2015(3): 1-7. https://doi.org/10.1155/2015/138707

Dashipour A., Razavilar V., Hosseini H., Shojaee-Aliabadi S., German J.B., Ghanati K., Khakpour M. and R. Khaksar. 2015. Antioxidant and antimicrobial carboxymethyl cellulose films containing Zataria multiflora essential oil. International Journal of Biological Macromolecules. 72: 606-613. https://doi.org/10.1016/J.IJBIOMAC.2014.09.006

De León-Zapata M.A., Sáenz-Galindo A., Rojas-Molina R., Rodríguez-Herrera R., Jasso-Cantú D. and C.N. Aguilar. 2015. Edible candelilla wax coating with fermented extract of tarbush improves the shelf life and quality of apples. Food Packaging and Shelf Life. 3: 70-75. https://doi.org/10.1016/j.fpsl.2015.01.001

Di Pierro P., Rossi Marquez G., Mariniello L., Sorrentino A., Villalonga R. and R. Porta. 2013. Effect of transglutaminase on the mechanical and barrier properties of whey protein/pectin films prepared at complexation pH. Journal of Agricultural and Food Chemistry. 61(19): 4593-4598. https://doi.org/10.1021/jf400119q

Dong M., Tian L., Li J., Jia J., Dong Y., Tu Y., Liu X., Tan C. and X. Duan. 2022. Improving physicochemical properties of edible wheat gluten protein films with proteins, polysaccharides and organic acid. LWT. 154: 112868 https://doi.org/10.1016/J.LWT.2021.112868

Groh K.J., Backhaus T., Carney-Almroth B., Geueke B., Inostroza P.A., Lennquist A., Leslie H.A., Maffini M., Slunge D., Trasande L., Warhurst A.M., and J. Muncke. 2019. Overview of known plastic packaging-associated chemicals and their hazards. Science of The Total Environment. 651(2): 3253-3268. https://doi.org/10.1016/j.scitotenv.2018.10.015

Han J.H. and J.D. Floros. 1997. Casting Antimicrobial Packaging Films and Measuring Their Physical Properties and Antimicrobial Activity. Journal of Plastic Film and Sheeting. 13(4), 287-298. https://doi.org/10.1177/875608799701300405

Hasan M., Mangaraj S., Verma D.K. and P.P. Srivastav. 2022. Trends in Edible Packaging Films and its Prospective Future in Food: A Review. Applied Food Research. 2(1): 100118. https://doi.org/10.1016/j.afres.2022.100118

Hwang H., Kim Y.J. and Y. Shin. 2020. Assessment of Physicochemical Quality, Antioxidant Content and Activity, and Inhibition of Cholinesterase between Unripe and Ripe Blueberry Fruit. Foods. 9(690): 1-12. https://doi.org/10.3390/FOODS9060690

Joseph S.v., Edirisinghe I. and B.M. Burton-Freeman. 2014. Berries: Anti-inflammatory effects in humans. Journal of Agricultural and Food Chemistry. 62(18): 3886-3903. https://doi.org/10.1021/jf4044056

Li C., Wang L. and F. Xue F. 2019. Effects of Conjugation between Proteins and Polysaccharides on the Physical Properties of Emulsion-Based Edible Films. Journal of the American Oil Chemists’ Society. 96(11): 1249-1263. https://doi.org/10.1002/AOCS.12278

Lin L., Peng S., Shi C., Li C., Hua Z. and H. Cui. 2022. Preparation and characterization of cassava starch/sodium carboxymethyl cellulose edible film incorporating apple polyphenols. International Journal of Biological Macromolecules. 212: 155-164. https://doi.org/10.1016/j.ijbiomac.2022.05.121

Liu X., Xue F., Li C. and B. Adhikari. 2022. Physicochemical properties of films produced using nanoemulsions stabilized by carboxymethyl chitosan-peptide conjugates and application in blueberry preservation. International Journal of Biological Macromolecules. 202: 26-36. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2021.12.186

Lu J., Li T., Ma L., Li S., Jiang W., Qin W., Li S., Li Q., Zhang Z. and H. Wu. 2021. Optimization of heat-sealing properties for antimicrobial soybean protein isolate film incorporating diatomite/thymol complex and its application on blueberry packaging. Food Packaging and Shelf Life. 29: 100690. https://doi.org/10.1016/j.fpsl.2021.100690

Luna-Sosa B., Martínez-Ávila G.C.G., Rodríguez-Fuentes H., Azevedo A.G., Pastrana L.M., Rojas R. and M.A. Cerqueira. 2020. Pectin-Based Films Loaded with Hydroponic Nopal Mucilages: Development and Physicochemical Characterization. Coatings. 10(5): 1-14. https://doi.org/10.3390/coatings10050467

McHugh T.H., Avena-Bustillos R. and J.M. Krochta. 1993. Hydrophilic Edible Films: Modified Procedure for Water Vapor Permeability and Explanation of Thickness Effects. Journal of Food Science. 58(4): 899-903. https://doi.org/10.1111/J.1365-2621.1993.TB09387.X

Mehraj S. and Y.S. Sistla. 2022. Optimization of process conditions for the development of pectin and glycerol based edible films: Statistical design of experiments. Electronic Journal of Biotechnology. 55: 27-39. https://doi.org/10.1016/J.EJBT.2021.11.004

Ngo T.M.P., Dang T.M.Q., Tran T.X. and P. Rachtanapun. 2018. Effects of Zinc Oxide Nanoparticles on the Properties of Pectin/Alginate Edible Films. International Journal of Polymer Science. 2018: 1-10. https://doi.org/10.1155/2018/5645797

Oliveira-Filho J.G., Bezerra C.C. de O.N., Albiero B.R., Oldoni F.C.A., Miranda M., Egea M.B., Azeredo H.M.C. and M.D. Ferreira. 2020. New approach in the development of edible films: The use of carnauba wax micro- or nanoemulsions in arrowroot starch-based films. Food Packaging and Shelf Life. 26: 100589. https://doi.org/10.1016/J.FPSL.2020.100589

Osorio F.A., Molina P., Matiacevich S., Enrione J. and O. Skurtys. 2011. Characteristics of hydroxy propyl methyl cellulose (HPMC) based edible film developed for blueberry coatings. Procedia Food Science. 1: 287–293. https://doi.org/10.1016/j.profoo.2011.09.045

Pérez-Vergara L.D., Cifuentes M.T., Franco A.P., Pérez-Cervera C.E. and R.D. Andrade-Pizarro. 2020. Development and characterization of edible films based on native cassava starch, beeswax, and propolis. NFS Journal. 21: 39-49. https://doi.org/10.1016/J.NFS.2020.09.002

Piechowiak T., Antos P., Józefczyk R., Kosowski P., Skrobacz K. and M. Balawejder. 2018. Impact of Ozonation Process on the Microbiological Contamination and Antioxidant Capacity of Highbush Blueberry (Vaccinum corymbosum L.) Fruit during Cold Storage. Ozone: Science & Engineering. 41(4): 376-385. https://doi.org/10.1080/01919512.2018.1540922

Piechowiak T., Grzelak-Błaszczyk K., Sójka M., Skóra B. and M. Balawejde. 2022. Quality and antioxidant activity of highbush blueberry fruit coated with starch-based and gelatine-based film enriched with cinnamon oil. Food Control. 138: 109015. https://doi.org/10.1016/j.foodcont.2022.109015

Rossi-Marquez G., di-Pierro P., Esposito M., Mariniello L. and R. Porta. 2014. Application of Transglutaminase-Crosslinked Whey Protein/Pectin Films as Water Barrier Coatings in Fried and Baked Foods. Food and Bioprocess Technology. 7(2): 447-455. https://doi.org/10.1007/s11947-012-1045-9

Rossi-Marquez G., di-Pierro P., Mariniello L., Esposito M., Giosafatto C.V.L. and R. Porta. 2017. Fresh-cut fruit and vegetable coatings by transglutaminasecrosslinked whey protein/pectin edible films. LWT. 75: 124-130. https://doi.org/10.1016/J.LWT.2016.08.017

Sandoval D.C., Luna-Sosa B., Martínez-Ávila G.C.G., Rodriguez-Fuentes H., Avendaño-Abarca V.H. and R. Rojas. 2019. Formulation and Characterization of Edible Films Based on Organic Mucilage from Mexican Opuntia ficus-indica. Coatings. 9(8): 1-11. https://doi.org/10.3390/coatings9080506

Saucedo-Pompa S., Rojas-Molina R., Aguilera-Carbó A.F., Saenz-Galindo A., de la Garza H., Jasso-Cantú D. and C.N. Aguilar. 2009. Edible film based on candelilla wax to improve the shelf life and quality of avocado. Food Research International. 42(4): 511-515. https://doi.org/10.1016/j.foodres.2009.02.017

Secretaría de Agricultura y Desarrollo Agropecuario (sader). 2018. Cultivo del arándano en México, reto superado. Secretaría de Agricultura y Desarrollo Rural. https://www.gob.mx/agricultura/es/articulos/cultivo-del-arandanoen-mexico-reto-superado (Fecha de consulta: 27 de mayo de 2022).

Semwal A., Ambatipudi K. and N.K. Navani. 2022. Development and characterization of sodium caseinate based probiotic edible film with chia mucilage as a protectant for the safe delivery of probiotics in functional bakery. Food Hydrocolloids for Health. 2: 100065. https://doi.org/10.1016/J.FHFH.2022.100065

Sogut E., Filiz B.E. and A.C. Seydim. 2022. Whey protein isolate- and carrageenan-based edible films as carriers of different probiotic bacteria. Journal of Dairy Science. 105(6): 4829-4842. https://doi.org/10.3168/JDS.2021-21245

Soro A.B., Noore S., Hannon S., Whyte P., Bolton D.J., O’Donnell C. and B.K. Tiwari. 2021. Current sustainable solutions for extending the shelf life of meat and marine products in the packaging process. Food Packaging and Shelf Life. 29: 100722. https://doi.org/10.1016/j.fpsl.2021.100722

Wigati L.P., Wardana A.A., Tanaka F. and F. Tanaka. 2022. Edible film of native jicama starch, agarwood Aetoxylon Bouya essential oil and calcium propionate: Processing, mechanical, thermal properties and structure. International Journal of Biological Macromolecules. 209(A): 597-607. https://doi.org/10.1016/j.ijbiomac.2022.04.021

Wu H., Liu C., Chen J., Chang P.R., Chen Y. and D.P. Anderson. 2009. Structure and properties of starch/α-zirconium phosphate nanocomposite films. Carbohydrate Polymers. 77(2): 358-364. https://doi.org/10.1016/J.CARBPOL.2009.01.002

Yang N., Sun Z.X., Feng L.S., Zheng M.Z., Chi D.C., Meng W.Z., Hou Z.Y., Bai W. and K.Y. Li. 2014. Plastic Film Mulching for Water-Efficient Agricultural Applications and Degradable Films Materials Development Research. Materials and Manufacturing Processes. 30(2): 143-154. https://doi.org/10.1080/10426914.2014.930958

Yuan D., Hao X., Liu G., Yue Y. and J. Duan. 2022. A novel composite edible film fabricated by incorporating W/O/W emulsion into a chitosan film to improve the protection of fresh fish meat. Food Chemistry. 385: 132647. https://doi.org/10.1016/J.FOODCHEM.2022.132647

Yuan Y., Wang H., Fu Y., Chang C. and J. Wu. 2022. Sodium alginate/gum arabic/glycerol multicomponent edible films loaded with natamycin: Study on physicochemical, antibacterial, and sweet potatoes preservation properties. International Journal of Biological Macromolecules. 213: 1068-1077. https://doi.org/10.1016/J.IJBIOMAC.2022.06.040

Zhang Y. and J.H. Han. 2006. Plasticization of Pea Starch Films with Monosaccharides and Polyols. JFS E: Food Engineering and Physical Properties. 71(6): 253-261. https://doi.org/10.1111/j.1750-3841.2006.00075.x

Zhou X., Dai Q., Huang X. and Z. Qin. 2021. Preparation and characterizations of antibacterial-antioxidant film from soy protein isolate incorporated with mangosteen peel extract. E-Polymers. 21(1): 575-589. https://doi.org/10.1515/epoly-2021-0058

Descargas

Publicado

2022-08-02

Número

Sección

Artículos

Cómo citar

Aplicación de película comestible a base de proteína-pectina para prolongar la vida en anaquel en arándanos . (2022). Universitas Agri, 1(1), 52. https://doi.org/10.59741/agri.v1i1.6

PLUM Metrics

Artículos más leídos del mismo autor/a